12 research outputs found

    'Selfish herds' of guppies follow complex movement rules, but not when information is limited

    Get PDF
    Under the threat of predation, animals can decrease their level of risk by moving towards other individuals to form compact groups. A significant body of theoretical work has proposed multiple movement rules, varying in complexity, which might underlie this process of aggregation. However, if and how animals use these rules to form compact groups is still not well under- stood, and how environmental factors affect the use of these rules even less so. Here, we evaluate the success of different movement rules, by comparing their predictions with the movement seen when shoals of guppies ( Poecilia reticulata ) form under the threat of predation. We repeated the experiment in a turbid environment to assess how the use of the movement rules changed when visual information is reduced. During a simulated predator attack, guppies in clear water used complex rules that took multiple neighbours into account, forming compact groups. In turbid water, the difference between all rule predictions and fish movement paths increased, particularly for complex rules, and the resulting shoals were more fragmented than in clear water. We conclude that guppies are able to use complex rules to form dense aggregations, but that environmental factors can limit their ability to do so

    Turbidity weakens selection for assortment in body size in groups

    Get PDF
    Prey animals commonly associate with similar-looking individuals to reduce predation risk, via a reduction in predator targeting accuracy (the confusion effect) and preferential targeting of distinct individuals (the oddity effect). These effects are mediated by body size, as predators often preferentially select large-bodied individuals, which are therefore at an increased risk within a group. The selection pressure to avoid oddity by associating with similar sized group mates is stronger for large individuals than small. This selection depends on the ability of both predators and prey to accurately assess body size and respond accordingly. In aquatic systems, turbidity degrades the visual environment and negatively impacts on the ability of predators to detect (and consume) prey. We assessed the effect of algal turbidity on predator–prey interactions in the context of the oddity effect from the perspective of both predator and prey. From a predator’s perspective, we find that 9-spined sticklebacks preferentially target larger Daphnia in mixed swarms in clear water, but not in turbid water, although the difference in attack rates is not statistically significant. When making shoaling decisions, large sticklebacks preferentially associate with size-matched individuals in clear water, but not turbid water, whereas small individuals showed no social preference in either clear or turbid water. We suggest that a reduced ability or motivation to discriminate between prey in turbid water relaxes the predation pressure on larger prey individuals allowing greater flexibility in shoaling decisions. Thus, turbidity may play a significant role in predator–prey interactions, by altering predator–prey interactions

    Turbidity influences individual and group level responses to predation in guppies, Poecilia reticulata

    Get PDF
    © 2015 The Association for the Study of Animal Behaviour. Increasing turbidity (either sedimentary or organic) from anthropogenic sources has significant negative impacts on aquatic fauna, both directly and indirectly by disrupting behaviour. In particular, antipredator responses of individuals are reduced, which has been attributed to a reduced perception of risk. Here, we explored the effect of turbidity on shoaling behaviour, which is known to carry important antipredator benefits, predicting that fish in turbid water should show reduced shoal cohesion (increased interindividual distances) and reduced responses to a simulated predatory threat. We explored both the individual and shoal level responses to a predation threat at four different levels of turbidity. At the shoal level, we found that shoals were less cohesive in more turbid water, but that there was no effect of turbidity on shoal level response to the predation threat. At an individual level, guppies in turbid water were more likely to freeze (rather than dart then freeze), and those that darted moved more slowly and over a shorter distance than those in clear water. Fish in turbid water also took longer to recover from a predation threat than fish in clear water. We suggest that because fish in turbid water behaved in a manner more similar to that expected from lone fish than to those in a shoal, the loss of visual contact between individuals in turbid water explains the change in behaviour, rather than a reduced perception of individual risk as is widely supposed. We suggest that turbidity could lead to a reduced collective response to predators and a loss of the protective benefits of shoaling

    Temporal and spatial variation in distribution of fish environmental DNA in England’s largest lake

    Get PDF
    Environmental DNA offers great potential as a biodiversity monitoring tool. Previous work has demonstrated that eDNA metabarcoding provides reliable information for lake fish monitoring, but important questions remain about temporal and spatial repeatability, which is critical for understanding the ecology of eDNA and developing effective sampling strategies. Here, we carried out comprehensive spatial sampling of England's largest lake, Windermere, during summer and winter to 1) examine repeatability of the method, 2) compare eDNA results with contemporary gill-net survey data, 3) test the hypothesis of greater spatial structure of eDNA in summer compared to winter due to differences in water mixing between seasons, and 4) compare the effectiveness of shore and offshore sampling for species detection. We find broad consistency between results from three sampling events in terms of species detection and abundance, with eDNA detecting more species than established methods and being significantly correlated to rank abundance determined by long-term data. As predicted, spatial structure was much greater in the summer, reflecting less mixing of eDNA than in the winter. For example Arctic charr, a deep-water species, was only detected in deep, mid-lake samples in the summer, while littoral or benthic species such as minnow and stickleback were more frequently detected in shore samples. By contrast in winter, the eDNA of these species was more uniformly distributed. This has important implications for design of sampling campaigns, for example, deep-water species could be missed and littoral/benthic species over-represented by focusing exclusively on shoreline samples collected in the summer

    Number of neighbours

    No full text
    The number of neighbours within 3-body lengths of each focal fis

    Data from: 'Selfish herds' of guppies follow complex rather than simple rules when information is not limited

    No full text
    Under the threat of predation, animals can decrease their level of risk by moving towards other individuals to form compact groups. A significant body of theoretical work has proposed multiple movement rules, varying in complexity, which might underlie this process of aggregation. However, if and how animals use these rules to form compact groups is still not well understood, and how environmental factors affect the use of these rules even less so. Here, we evaluate the success of different movement rules, by comparing their predictions with the movement seen when shoals of guppies (Poecilia reticulata) form under the threat of predation. We repeated the experiment in a turbid environment to assess how the use of the movement rules changed when visual information is reduced. During a simulated predator attack, guppies in clear water used complex rules that took multiple neighbours into account, forming compact groups. In turbid water, the difference between all rule predictions and fish movement paths increased, particularly for complex rules, and the resulting shoals were more fragmented than in clear water. We conclude that guppies are able to use complex rules to form dense aggregations, but that environmental factors can limit their ability to do so

    Fish positions - turbid water

    No full text
    X and Y coordinates of the fish in each shoal in turbid wate

    Fish positions - clear water

    No full text
    X and Y coordinates of the fish in each shoal in clear wate

    Source code for predicted movement rules

    No full text
    Matlab .m file containing the code used to generate the predicted movement paths of agents following each of the movement rules specified in the manuscrip

    Latency to recover from the predator stimulus

    No full text
    This file contains the frame number at which individuals initiated aggregation behaviour, for all shoals in clear and turbid water. Missing values indicate fish that remained frozen
    corecore